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Abstract

Data compression will play an increasingly important role in the storage and trans-

mission of image data within the NASA science programs as the Earth Observing

System comes into operation. It is important that the science data be preserved at

the fidelity the instrument and satellite communication systems were designed to pro-

duce. Lossless compression must therefore be applied, at least, to archive the processed

instrument data. In this paper we present an analysis of the performance of lossless

compression techniques and develop an adaptive approach which applied image remap-

ping, feature-based image segmentation to determine regions of similar entropy, and

high-order arithmetic coding to obtain significant improvements over the use of conven-

tional compression techniques alone. Image remapping is used to transform the original

image into a lower entropy state. Several techniques were tested on satellite images

including differential pulse code modulation, bi-linear interpolation, and block-based

Linear predictive coding. The results of these experiments are discussed and trade-offs

between computation requirements and entropy reductions are used to identify the

optimum approach for a variety of satellite images. Further entropy reduction can be

achieved by segmenting the image based on local entropy properties then applying a

coding technique which maximizes compression for the region. Experimental results

are presented showing the effect of different coding techniques for regions of different

entropy. A rule-base is developed through which the technique giving the best com-

pression is selected. The paper concludes that maximum compression can be achieved

cost effectively and at acceptable performance rates with a combination of techniques

which are selected based on image contextual information.

1The author is with Caelum Research Corp., Silver Spring, Md 20901, Phone: (301) 593-1748.
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1 Introduction

With a steadily growing use of imaging technology in almost all computerized scientific

fields the need for better image compression for purposes of minimizing transmission time

and storage space/cost is ever present. Lossless image compression which permits faithful

reconstruction of the original image is important in maintaining accurate image archives of

digitized documents, in remote sensing image storage and retrieval, and in medical imag-

ing where loss of fidelity due tossy compression can compromise radiological diagnosis. The

techniques for lossless compression basically attempt to re-code image data such that redun-

dant elements are coded with the least number of bits possible by using the frequency of

occurrence of elements to determine the number of bits to use to code the image [1] [2]. The

amount of compression obtained is related to the degree of redundancy present in the image.

To obtain higher compression over the basic approach, preprocessing techniques which at-

tempt to decorrelate image pixel values [3] and source modeling techniques which attempt to

use the context of local pixei values [4] have been tried. One- and two-dimensional discrete

pulse code modulation (DPCM), [5] bi-linear interpolation [6], and hierarchical interpolation

[7] technioues are typical of the decorrelation approaches that have been applied to improve

image compression. Prior to coding an image, a statistical model of the image is needed

which can be developed in a separate pass over the image or adaptively as the image pixels

are being coded [8]. Zero-order modets consider each pixel to be independent of its neigh-

bors. Higher-order models collect statistics on sequences of adjacent pixels [9]. Higher-order

statistical models provide better compression where images are smooth and regular and zero

order models are more effective where the images have a large high frequency content [10].

Investigators have shown that combinations of these techniques when applied to particular

classes of images provide improved compression, but no one combination is suitable for all

images, particularly satellite images where the image texture can change dramatically over

small spacial distances, from smooth desert re_ons to rough snow-capped mountains. Based

on work done on lossless image compression for medical images by the authors [11] and others

[12], it is believed that satellite imagery would best be compressed_ with multiple compression

techniques which are adaptively selected based on properties of local image re_ons. Image

regions which contain a large degree of prominent fine texture will not compress well because

little data redundancy and inter-pixel correlation will exist. For such re_ons, the simplest

least computationally ex-pensive compression technique should be applied. For regions with

smooth textures or regular patterns, image decorrelation and high-order modeling wili pro-

duce the highest compression. For regions with characteristics between these two extremes,

the most compression will be achieved with some combination of decorretation and statisti-

cal modeling with the order of the statistics selected based on some measure of inter-pixel

pattern repetition. The problem then becomes the identification of image features which

can be used to select, the decorrelation, modeling, and encoding techniques to give maximum

compression at minimum "cost": Cost being a measure of the computational requirements

for a given approach against the degree of improvement in compression achieved by using

it. If such a feature set can be found, then the image to be compressed could be divided

into arbitrarily small regions, the features calculated for each region, the regions classified

according to the best compression techniques to apply, and then similarly cta.ssified regions

compressed appropriately (Figure 1). A pipelined process of image analysis, feature ex- ,
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traction, classification, decorrelation followed by modeling and coding is shown in Figure
1. Parallelization is possible due to the region processingapproach used. Feature extrac-
tion and region classificationare performedin parallel on eachimageregion. The classifier
determinesthe correct compressionapproachesto usedbasedon a decisiontree approach
using the calculated features. Image regionsthat will usea decorrelationpreprocessorwill
be passedthrough that path, other regionswill be processedby the modeler and coder
appropriate to the type of region. The modeler and coder are serializedprocessesin this
architecture becauseadaptive modeling will be used, that is, the statistical model is built
as the image pixels are being compressed. All image regionsthat are similarly classified
will beprocessedthrough the samemodeler/coderpath sothat a unique statistical model is
generatedfor each type of region. The modelerand coderwill processall pixels in a region
then proceed to the next region, and so on. This procedurepreservesany two-dimensional
correlation of pixel valuesand shouldmaximize compression.To be able to decompressthe
image file, it is necessarythat the compressedfile output by this architecture contains a
headerwhich records a classifieridentifier for eachregion. The imagecan be reconstructed
by reading the region classifier identifier and decompressingthe region through the reverse
of the compressionprocess.

The application of a decorrelationstep prior to modelingand codingwasalsoconsidered
after proving the suitability of this approachwithout it. Decorrelating the image reduces
pixel value variance [10] and thereforeimproves compression.Two decorrelation methods
wereused,DPCM and bi-linear interpolation. Both arerelatively simple to implement with
DPCM using one or moreprevious pixel valuesto predict the current pixel value, and the
lattice points in a 2-dimensionalkernel of pixels beingusedto predict the other kernelpixel
values.In the caseof bi-linear interpolation, the output is two data streams,a set of predic-
tion errors,and the valueof the lattice points for eachnon-overlapping2-dimensionalkernel
in the image. The computational cost of the hi-linear interpolation processis considerably
more than the DPCM approach,but the improvementin compressioncan be considerable
for certain types of images.

2 Image Analysis and Feature Extraction

The key to the success of this adaptive scheme for compression lies in the selection of features

which can usefully classify image regions into the optimum compression approach and thereby

minimize the compressed file size. Their exist no theoretical foundation for determining the

feature set that would provide optimum compression selection. An empirical approach was

take to determine the best feature set: Satellite images were selected for compression which

contained a large variety of textures. The images were divided into symmetrical regions and

each region was compressed using several decorrelation and lossless compression techniques.

Several features were calculated for each region. Using cluster analysis techniques to identify

unique reions in feature space, a binary decision tree classifier was developed using features

from a large variety regions. The features selected for the initial training of the classifier were

determined by evaluation of the compression process and from previous work on medical

image compression [11], [13]. There are several well known techniques for estimating the

amount and degree of texture in an image, including co-occurrence matrices [14], sum and
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Figure 1: Architecture of the image compression approach.

difference matrices [15], and local grey-scale dependance matrices [16]. Due to the memory

requirements of these approaches (at least the same amount as the original image), we elected

to use an feature set less resource demanding. The compressibility of an image is related

to the range and distribution of intensities in the image, the individual pixel entropy, and

the degree of variability in local pixel intensity values. Based on this knowledge, the initial

feature included:

Average pixel intensity - The mean over the region of the pixel values, selected so that

regions similar brightness would be group together:

E,,j v(i, j)
N

where, i, j are the rows and columns, respectively, in the n x n subimage, N = n + n, and

p(i,j) the intensity of pixel i,j.

Pixel Intensity Variance - The variability in brightness over the region:

_i,j(p(i,j)- yc)2
P_= N

First-Order Entropy - The amount of pixel value redundancy present in the region:

.... z = E(-P, jog P,, l
i,j
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AverageRun-length - The averagevalueof the run-length sectionsgeneratedby thresh-
olding the subimagewith the mean gray-level:

R_ - El,i Rl,j
M

where, 1,j are the rows and columns in an m x n subimage runlength matrix, M = m + n,

and R is the distance of the run length.

Run-length Variance - The variance in run lengths obtained by thresholding the subimage

with the mean gray-level:

/L = Et,j (R ,j - 2
M

The images analyzed in this process were all of sea-ice taken from spectral band 3 from

AVHRR satellite data. As shown in Figure 2, sea-ice images (128x128x16-bit) in this spectral

band provide a wide variety of textures from smooth to very rough. The compressibility of

regions within this large image varies considerably: with the left, middle and right images in

the Figure compressing to 35%, 39%, and 28%, respectively, when arithmetic coding is used

with first-order modeling. As would be expected, the less textured images compress better.

3 Decision Tree Classifier

An unsupervised classifier method was used to form clusters in feature space, and cluster

analysis [17] used to allocate class regions based on minimizing intra-class second-order mo-

ments. In the training process, subimages feature vectors containing the above features

were calculated for a training set. As each subimage was processed, its feature vector was

calculated, it's nearest neighbor in feature space located, the new centroid of the region

calculated, and the moments of the vector in that class calculated. Class region boundaries

were recalculated when the second moments for the region started to diverge. A binary deci=

sion tree was selected for classification using the Koimogorov-Smirnov test [18] to determine

the threshold value for each feature at each node in the decision tree. This results in the

selection of a feature at each node which has maximum separation from the nearest neighbor

in feature space. Figure 4 shows a representation of a binary decision tree based on the

features identified in the previous section.

The classifier output is a class identifier for the subimage processed. This is then used

to create a map of the subimages within the image. The map is used as header information,

prepended to the compressed image file, and used by a decompression process to recover the

original image.
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Figure 2: A 512xS12x16-bit sea-ice image showing typical texture variety
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Figure 3: Sea-ice images showing light and dark evenly textured regions, and a region with

high edge content

4 Compression Results

We selected several compression methods based on their ability to compress medical images.

These were : Lempel-Ziv dictionary coding with a 15-bit code [19] (LZ), Huffman coding

with adaptive modeling (HC) arithmetic coding with static modeling (At) arithmetic coding

with zero-order modeling (Ar-0) arithmetic coding with adaptive first-order modeling (Ar-1)

arithmetic coding with adaptive second-order modeling (At-2)

We ran sixteen 512x512x16-bit sea ice images through each of these processes to obtain

a baseline of performance for each compression method. Table 1 shows the results of this

baseline for three types of texture: Smooth regions with very little or gradual changes in

textures; moderately textured regions similar to the middle image in Figure 3; and, regions

including a high density of gray-scale variations. Next images were divided into 64x64x16-

bit subimages and the compression methods run on each subimage. The compression results

were examined to determine the best compression method for each of the subimages. The

best compression technique was always one from LZ, Ar- 0, At-l, or Ar-2 with a bilinear

interpolation decorrelation preprocessing step. The number of classes (k) to be considered

was then taken as four. The feature set mentioned above w-as extracted for each image

and cluster analysis performed for the subimages from the entire image set. An automatic

classifier was built using the previously mentioned procedure and a binary decision tree was

generated. The 16 512x512 images were then run through the adaptive process shown in

Figure 1 and the compression values shown in Table 2 obtained.

5 Conclusions

The adaptive application of a variety of compression techniques on satellite images as op-

posed to applying one technique appears to give an improvement in lossless compression

in order of 15we have presented to select the lossless compression technique is to calculate

features of subimages with the image and use then feature values in a binary decision tree

to select the best compression technique for that subimage. While these results by no means
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Figure 4: Binary decisiontree to select the optimal compressionmethod basedon selected
feature values

Compression Smooth Moderate
Method Image Image
Huffman 46 34

AR 46 35

Granular
Image

26
2?

LZ 54 46 35

At-0 51 47 44

AR-I 68 55 4"9

AR-2 68 51 43

Table 1: The averaged values for the compression methods tested with compression expressed

as a percentage of source/compressed file size

Smooth Moderate Granular

Image Image Image

71 62 56

Table 2: Adaptive compression applied to the same images showing better compression than

the best of Table 1
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imply that this approach will universally provide better compression for all satellite images,

they do indicate that further work in expanding the test database is merited• Expansion

of the compression approaches to include a decorrelation preprocessing step, as described

previously should be undertaken. The feature set used to select the compression method

was adequate, but attention needs to be paid to using the most cost/effective features from

a processing point-of-view. It is believed that this compression approach using low-cost

multiprocessing architectures and large secondary caches on each processor, will provide

compression performance suitable of use in satellite imagery systems such as TRMM and
EOS.
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